Horizon SPIRIT - Demonstration Case 2

INTEGRATION OF HEAT PUMP TECHNOLOGY IN A SUGAR PRODUCTION PLANT

Virginia Amato (vgm@dti.dk), Jonas Lundsted Poulsen, Emil Navntoft Pedersen, Benjamin Zühlsdorf | Danish Technological Institute, Aarhus, Denmark Sebastian Schultze, Ole Fredrich | GEA Refrigeration, Berlin, Germany Bart Aerts, Olivier Knaepen | Tiense Suikerraffinaderij, Tienen, Belgium

DEMONSTRATION CASE

Full-scale demonstration of HTHP technology in an industrial process

- End-user (sugar factory): Tiense Suikerraffinaderij
- Technology supplier: GEA Refrigeration Germany
- Knowledge and innovation center: Danish Technological Institute

SUGAR PRODUCTION

Energy-intensive process that requires steam (currently generated by fossil fuel driven boiler) to crystalize sugar from a solution

- Main (beet) campaign:
 from September to
 January, steam at 138 °C
- Secondary (thick juice)
 campaign: from March to
 May, steam at 114 °C

TESTING PROGRAM

- Long-term demonstration (at least 2000 hours) to prove robustness and reliability
- Determine **heating and cooling load** and **COP** at different operating conditions
- Test startup and shutdown process
- Monitor oil quality, noise and vibration level
- Optimize process conditions
- Generate data for modelling a digital twin

HEAT PUMP INTEGRATION

Demonstration: divert 4 MW of heat from the boiler to a HTHP, **saving 2439 and 1560 tons of CO₂ *** during the main and secondary campaign, respectively.

Overall goal: replace the boiler and electrify the whole process

*Assuming emissions-free future electricity and 208 g_{CO2eq}/kW_{th} in the present heat production.

System Design

- Refrigerant: **n-Pentane (R-601)**
- Compressor: GEA screw compressor
- Heat exchangers: **shell-and-tube**
- Heat source: vacuum steam at T = 80 °C
- Heat sink: steam at T_{sat} = 138/114 °C

PROGRESS AND NEXT STEPS

Basic engineering and P&ID completed Detailed engineering in progress Main components designed and ordered

Testing campaign / start

Jan | Feb | Mar| Apr | Mag| Jun | Jul | Aug| Sep | Oct Nov| Dec 2024

Installation Commissioning

